

Specification

ETSPL1G60D-32

10GBASE-BX20-U SFP+TX1270nm/RX1330nm 60km DDM Transceive

Features:

- ♦ Supports 9.95Gb/s to 11.3Gb/s bit rates
- ♦ Hot-pluggable SFP+ footprint
- ♦ Single LC for Bi-directional Transmission
- ♦ Maximum link length of 60km
- ♦ Built-in 1270/1330 WDM Filter
- ♦ Uncooled 1270nm or 1330nm CWDM DFB Laser.
- ♦ Power dissipation <1.5W</p>
- ♦ No Reference Clock required
- ♦ Built-in digital diagnostic functions
- ♦ Temperature range 0°C to 70°C
- ♦ Very low EMI and excellent ESD protection
- ♦ RoHS Compliant Part

Applications:

- ♦ 10GBASE-LR/LW Ethernet
- ♦ SONET OC-192 / SDH
- ♦ 10G Fibre Channel

Description:

ENTA SOURCE's ETSBLXG60D-32 Bi-directional 10Gb/s (SFP+) transceivers are compliant with the current SFP+ Multi-Source Agreement (MSA) Specification. They comply with 10GBASE-LR/LW Ethernet, SONET OC-192 / SDH and 10G Fibre Channel 1200-SM-LL-L. Digital diagnostics functions are available via a 2-wire serial interface, as specified in the SFP+ MSA.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typical	Max.	Unit
Storage Temperature	Ts	-40		+85	°C
Supply Voltage	V _{CC} T, R	-0.5		4	V
Relative Humidity	RH	0		85	%

Recommended Operating Environment:

Parameter	Symbol	Min.	Typical	Max.	Unit
Case operating Temperature	T _C	-5		+70	°C
Supply Voltage	V _{CCT, R}	+3.135		+3.465	V
Supply Current	I _{CC}			450	mA
Power Dissipation	P _D			1.5	W

● Electrical Characteristics (T_{OP} = 0 to 70 °C, VCC = 3.135 to 3.465 Volts)

Parameter		Symbol	Min	Тур	Max	Unit	Note
Transmitter:							
Differential input voltage s	swing		180		700	mVpp	1
Transmit Disable Innert	Н	V _{IH}	2.0		Vcc+0.3	V	
Transmit Disable Input	L	V _{IL}	0		0.8	V	
T "	Н	V _{OH}	2.4		Vcc+0.3	V	
Transmit Enable Output	L	V _{OL}	0		0.4	V	2
Input Differential Impedance		Zin	80	100	120	Ω	
Receiver							
Differential output voltage swing			300		850	mVpp	3
LOC Output	Н	V _{OH}	2.4		Vcc+0.3	V	2
LOS Output	L	V _{OL}	0		0.4	V	
Output Differential Impedance		Zon	80	100	120	Ω	

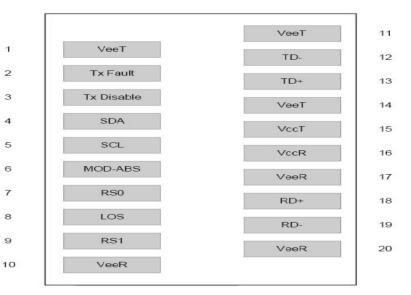
Notes:

Note 1) TD+/- are internally AC coupled with 100Ω differential termination inside the module.

Note 2) Tx Fault and Rx LOS are open collector outputs, which should be pulled up with 4.7k to $10k\Omega$ resistors on the host board. Pull up voltage between 2.0V and Vcc+0.3V.

Note 3) RD+/- outputs are internally AC coupled, and should be terminated with 100Ω (differential) at the user SERDES.

Optical Parameters(T_{OP} = 0 to 70°C, VCC = 3.135 to 3.465 Volts)


Para	Symbol	Min	Тур	Max	Unit	Ref.	
Transmitter							
Bit Rate		BR	9.9		11.3	Gb/s	
Optical	ETSBLXG60D-23	λ	1260	1270	1280	nm	
Wavelength	ETSBLXG60D-32		1320	1330	1340		
Average output po	ower	Ро	0		+5	dBm	
Optical Extinction	Ratio	ER	3.5			dB	
Spectral width		Δλ			1	nm	
Side Mode Suppre	ssion Ratio	SMSR	30			dB	
Optical Eye Mask			Compliant with IEEE802.3ae				
Receiver							
Bit Rate		BR	9.9		11.3	Gb/s	
Optical	ETSBLXG60D-23	λ	1320	1330	1340	nm	
Wavelength	ETSBLXG60D-32		1260	1270	1280		
Receiver Sensitivit	Sen			-22	dBm	1	
Maximum Input Po	P _{MAX}	-7			dBm		
LOS De-Assert	LOS _D			-23	dBm		
LOS Assert	LOS Assert					dBm	
LOS Hysteresis	LOS _H	0.5		4	dB		

Notes:

Note 1) Measured with a PRBS of 2^{31} -1 at 1 x 10^{-12} BER and 3.5 dB extinction ratio.

Pin Assignment

Diagram of Host Board Connector Block Pin Numbers and Name

Pin Function Definitions

PIN #	Name	Function	Notes
1	VeeT	Module transmitter ground	1
2	Tx Fault	Module transmitter fault	2
3	Tx Disable	Transmitter Disable; Turns off transmitter laser output	3
4	SDL	2 wire serial interface data input/output (SDA)	
5	SCL	2 wire serial interface clock input (SCL)	
6	MOD-ABS	Module Absent, connect to VeeR or VeeT in the module	2
7	RS0	Rate select0, optionally control SFP+ receiver. When high, input data rate >4.5Gb/s; when low, input data rate <=4.5Gb/s	
8	LOS	Receiver Loss of Signal Indication	4
9	RS1	Rate select0, optionally control SFP+ transmitter. When high, input data rate >4.5Gb/s; when low, input data rate <=4.5Gb/s	
10	VeeR	Module receiver ground	1
11	VeeR	Module receiver ground	1
12	RD-	Receiver inverted data out put	
13	RD+	Receiver non-inverted data out put	
14	VeeR	Module receiver ground	1
15	VccR	Module receiver 3.3V supply	
16	VccT	Module transmitter 3.3V supply	
17	VeeT	Module transmitter ground	
18	TD+	Transmitter inverted data out put	
19	TD-	Transmitter non-inverted data out put	
20	VeeT	Module transmitter ground	1

- Note 1) The module ground pins shall be isolated from the module case.
- Note 2) This pin is an open collector/drain output pin and shall be pulled up with 4.7K-10Kohms to Host_Vcc on the host board.
- Note 3) This pin shall be pulled up with 4.7K 10Kohms to VccTin the module.
- Note 4) This pin is an open collector/drain output pin and shall be pulled up with 4.7K-10Kohms to Host Vcc on the host board.

SFP Module EEPROM Information and Management

The SFP modules implement the 2-wire serial communication protocol as defined in the SFP -8472. The serial ID information of the SFP modules and Digital Diagnostic Monitor parameters can be accessed through the I²C interface at address A0h and A2h. The memory is mapped in Table 1. Detailed ID information (A0h) is listed in Table 2. And the DDM specification at address A2h. For more details of the memory map and byte definitions, please refer to the SFF-8472, "Digital Diagnostic Monitoring Interface for Optical Transceivers". The DDM parameters have been internally calibrated.

Table 1. Digital Diagnostic Memory Map (Specific Data Field Descriptions)

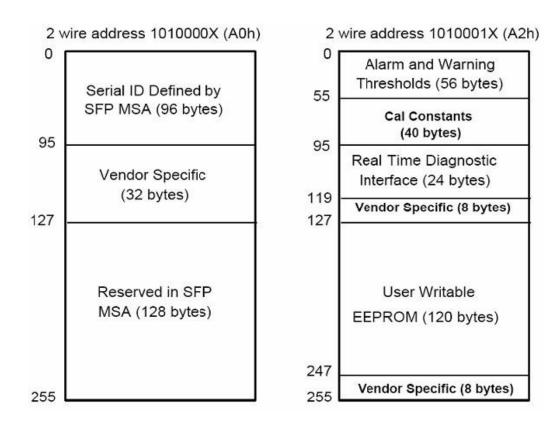
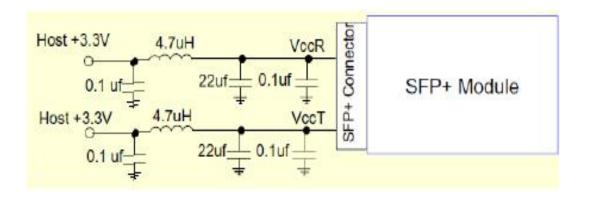


Table 2 - EEPROM Serial ID Memory Contents (A0h)

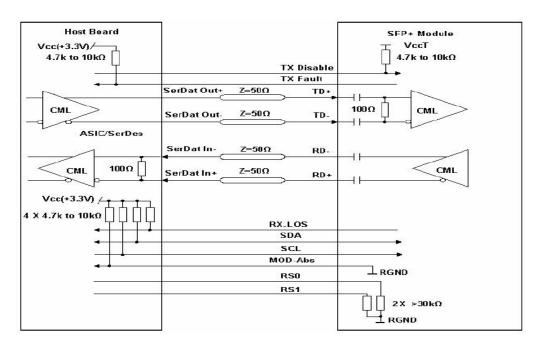
Data	Length	Name of	Description and Contents		
Address	(Byte)	Length	Description and Contents		
Base ID Fiel	ds				
0	1	Identifier	Type of Serial transceiver (03h=SFP)		
1	1	Reserved	Extended identifier of type serial transceiver (04h)		
2	1	Connector	Code of optical connector type (07=LC)		
3-10	8	Transceiver	10G Base-LR		
11	1	Encoding	64B/66B		
12	1	BR, Nominal	Nominal baud rate, unit of 100Mbps		
13-14	2	Reserved	(0000h)		
15	1	Length(9um)	Link length supported for 9/125um fiber, units of 100m		
16	1	Length(50um)	Link length supported for 50/125um fiber, units of 10m		
17	1	Length(62.5um)	Link length supported for 62.5/125um fiber, units of 10m		
18	1	Length(Copper)	Link length supported for copper, units of meters		
19	1	Reserved			
20-35	16	Vendor Name	SFP vendor name: ENTA SOURCE		
36	1	Reserved			
37-39	3	Vendor OUI	SFP transceiver vendor OUI ID		
40-55	16	Vendor PN	Part Number: "ETSBLXG60D-32" (ASCII)		
56-59	4	Vendor rev	Revision level for part number		
60-62	3	Reserved			
63	1	CCID	Least significant byte of sum of data in address 0-62		
Extended ID) Fields				
64-65	2	Option	Indicates which optical SFP signals are implemented		
CC	1	DD	(001Ah = LOS, Tx_FAULT, Tx_DISABLE all supported)		
66	1	BR, max	Upper bit rate margin, units of %		
67	1	BR, min	Lower bit rate margin, units of %		
68-83	16	Vendor SN	Serial number (ASCII)		
84-91	8	Date code	ENTA SOURCE's Manufacturing date code		
92-94	3	Reserved			
95	1	CCEX	Check code for the extended ID Fields (addresses 64 to 94)		
Vendor Spe	Vendor Specific ID Fields				
96-127	32	Readable	ENTA SOURCE specific date, read only		
128-255	128	Reserved	Reserved for SFF-8079		

Digital Diagnostic Monitor Characteristics

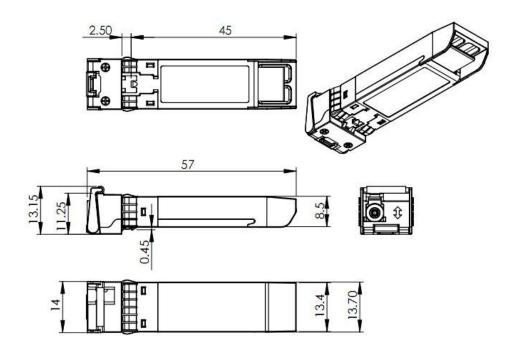

Data Address	Parameter	Accuracy	Unit
96-97	Transceiver Internal Temperature	±3.0	°C
100-101	Laser Bias Current	±10	%
100-101	Tx Output Power	±3.0	dBm
100-101	Rx Input Power	±3.0	dBm
100-101	VCC3 Internal Supply Voltage	±3.0	%

Regulatory Compliance

The ETSBLXG60D-32 complies with international Electromagnetic Compatibility (EMC) and international safety requirements and standards (see details in Table following).


Electrostatic Discharge	MIL-STD-883E	Class 1(>1000 V)
(ESD) to the Electrical Pins	Method 3015.7	
Electrostatic Discharge (ESD)	IEC 61000-4-2	Compatible with standards
to the Single LC Receptacle	GR-1089-CORE	
Electromagnetic	FCC Part 15 Class B	Compatible with standards
Interference (EMI)	EN55022 Class B (CISPR 22B)	
	VCCI Class B	
Laser Eye Safety	FDA 21CFR 1040.10 and 1040.11	Compatible with Class 1 laser
	EN60950, EN (IEC) 60825-1,2	product.

Recommended Circuit


Recommended Host Board Power Supply Circuit

Recommended High-speed Interface Circuit

Mechanical Dimensions

ENTA SOURCE reserves the right to make changes to the products or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such products or information.

Published by ENTA SOURCE Co., Ltd.

Copyright © ENTA SOURCE

All Rights Reserved

